
Copyright Ó 1993, 1994 Don Yacktman.    All Rights Reserved.    Version 
1.7.1.

MiscKit Charter
The MiscKit is a kit of resources provided by members of the USENET

and InterNet community for use by anyone who develops under 
NEXTSTEP and/or Objective-C.    Changes, bug fixes, and suggestions for 
improvement in the kit are all welcome and encouraged.    Programmers 
can submit code and tools, while users can suggest ways to improve 
what is here, to the benefit of all.

In an effort to keep all this in some semblance of order, a few ªrulesº 
are in place.    These rules aren't meant to make things difficult; they are 
intended to make things run smoothly and without confusion.    If this 
goal isn't being met, then the rules will need to be adjusted so that they 
are met; send your suggestions to the MiscKit mailing list for discussion 
there.    There is no reason why changes can't be made to improve 
things.



Altering;¬Altering the License and/or Charter is done by a vote of 
MiscKit authors and owners.    Each author has one vote; if your name is 
in the Authors.rtf file as an author, contributor, or owner, you have the 
right to cast a vote.    The author and owner of a resource are the same 
person unless some written agreement exists which transfers ownership.
When approval is requested for a particular change, failure to respond 
within two weeks of such a request constitutes a ªYESº vote.    Voting is 
initiated by the MiscKit Administrator; the administrator will prepare a 
new license or charter with the proposed modifications and then present
the new version for voting.    Note that although changes are allowed in 
the charter and license, use and distribution of the MiscKit is free, and 
must remain so.    That means that no party may come in, acquire the 
MiscKit, and then turn around and charge for it, nor may they impose 
any new restrictions on the distribution of the MiscKit.    Changes to the 
license affect future releases of the MiscKit, but not earlier releases.

Donations;¬Donated code falls under the MiscKit license.    There are 
certain special cases where code is included in the MiscKit but retains its
own license.    In these special cases, the code does not fall under the 
MiscKit license.    This situation is highly discouraged, and it is up to the 
MiscKit administrator's discretion to decide whether or not to include 
such ªindependentº code.    By contributing to the MiscKit, the resource 



owner agrees unconditionally to the terms detailed in the license and 
charter.    (If you don't like the license and/or charter, you shouldn't 
contribute.)    The owner cannot contribute under different terms without 
special permission from the MiscKit administrator.    An owner cannot 
remove a contribution once it has been contributed.    (See License.rtf 
and License_Notes.rtf for more information on this.)    By contributing a 
resource to the MiscKit, the owner agrees to follow this policy and is 
giving up the right to remove the contributed resource from the MiscKit.

;¬Accepted contributions include foundation objects, interface 
objects, programming tools, Interface Builder palettes, and Project 
Builder .bproj (subproject) directories.    All contributions should be 
accompanied by .rtf documentation if possible, but this is not required.    
If no documentation is provided, some willing soul will be assigned the 
task of keeping the documentation up to date.    Typically, this is easiest 
to do if the code maintainer (see below) is the one who does 
documentation, and this is encouraged, even though it is not required.

Prefix;¬For consistency, all MiscKit objects, including functions, 
compiler defines in header files, Objective-C objects, protocols, and 
defined types will be prefixed with ªMiscº.      (Compiler defines should 
use ªMISCº.)    Exceptions to this rule will only be made in cases where a 
better solution is impossible, or the Misc prefix would cause a problem 



worse than the potential name conflicts.    The MiscKit administrator 
must give permission for any exceptions.    This prefix is intended to 
assure that the MiscKit's name space will conflict with no other 
Objective-C name space or kit.    Functions, variables, or preprocessor 
defines seen only in the source files and not in the header files are not 
required to use the ªMiscº or ªMISCº prefix.    Note that Objective-C 
categories are not required to use the ªMiscº prefix.

Resources;¬Some MiscKit objects require the use of external 
resources (tiff images, sounds, .nib files, string tables, etc.).    Currently, 
there are two ways to provide for this.    First, for an object in the MiscKit 
library (libmisckit.a), the resources needed should be added to a given 
project in ProjectBuilder.    Second, if the object is available as a 
ProjectBuilder .bproj file, the subproject should be added to the project; 
the subproject will contain all necessary resources, which will in turn be 
incorporated by ProjectBuilder into the project.    This is preferred 
because the resources are encapsulated along with the object that uses 
them.    If enough shareable resources become part of the MiscKit, a third
alternative will also be implemented, which at this time is 
unimplemented, and will be known as the MiscKit runtime 
library²;Charter.rtf;DaggerFootnote;¬.    It is hoped by most that a pool of
shareable resources never becomes necessary.



Administration;¬MiscKit maintenance and integration is overseen by 
the MiscKit administrator, Don Yacktman.    If changes are needed to 
comply with kit standards and requirements, such as the prefix, the 
administrator will work with the submitter to bring the resource into 
compliance.    The administrator will accept requests from third party 
distributors who wish to redistribute the MiscKit and provide them with 
the latest versions of the MiscKit as well as notification of new releases 
as they occur.    Notification of new releases, performed via an e-mail 
alias, is available to anyone upon request, and will also be sent to the 
MiscKit e-mail alias.    The administrator may resign his/her post at any 
time, in which case a new administrator may be chosen and ratified by a
simple majority of the MiscKit authors, and should be chosen based 
upon ability and resources to do a respectable (good) job keeping things 
up to date.

Maintenance of an individual MiscKit resource is to be handled 
through the resource's maintainer, as listed in the Authors.rtf file in the 



MiscKit distribution.    That maintainer will forward tested and completed 
changes to the administrator for inclusion in the official release of the 
kit.    The administrator will also forward changes back to the maintainer 
rather than just putting them straight into the kit.    (ie., just because the 
administrator makes the distributions does not mean he or she can 
break this rule and change what an author sends to him!)    The 
maintainer accepts bug reports, code additions and enhancements, and 
any other feedback pertaining to the resource in question, and is then 
expected to forward the final revisions, after testing, to the MiscKit 
administrator for inclusion in the MiscKit.    The maintainer for a resource 
is typically the owner of a resource, which, by default, is the original 
author.    The owner is the person who owns the copyright for a resource;
this is the original author, unless a signed agreement transferring the 
copyright to another individual exists.    The owner has the right to 
choose a maintainer for the resource.    In the event that the owner 
forfeits the right to choose a maintainer, a maintainer will be chosen 



from the MiscKit authors, or any other suitable volunteer, by the MiscKit 
administrator.    Although a resource included in the MiscKit cannot be 
removed by its owner, if the owner decides they do not wish to be a 
MiscKit maintainer, but does wish to retain ownership for any reason, 
they may do so and a maintainer will be chosen as delineated above.

New features to the kit and architectural decisions should be 
discussed in the MiscKit mailing alias so that things are designed right 
before any code is written.    This is not a strict requirement; it is OK to 
simply submit a resource, but discussion is recommended because it will
make for a better design in the long run, and this is the main purpose of 
the mailing alias anyway.    This alias is unmoderated; participants are 
expected to use their own good judgement.    Flame wars are highly 
unwelcome; only constructive discussion is desired.    (Of course, 
disagreement is expected; without opposing viewpoints it is impossible 
to consider all eventualities and thus all viewpoints are to be respected, 
especially when the topic is design of a particular resource.)    Currently, 



the MiscKit e-mail alias is misckit@byu.edu.    Send mail to misckit-
request@byu.edu to get on or off the list.

Any pending projects for the MiscKit will be listed in a To_Do.rtf file in
the MiscKit distribution.    This will include things such as ªobjects we'd 
like to seeº, ªknown bugsº, ªdevelopment tools we'd like to addº, and so 
on.    Anything that would be nice to have, but isn't a current work in 
progress would turn up in that file.    An In_Progress.rtf file will list any 
bugs which are currently being chased, any deficiencies which are being 
dealt with, and any projects in progress.    The misckit_proj/Temp 
directory will hold any projects that are in progress, but are not yet 
integrated into the MiscKit, if the author wants to make code available 
for public comment.    It is not mandatory to provide the MiscKit 
administrator with code in progress; this directory is provided solely for 
those who wish to use it.    Nothing in the Temp directory is guaranteed 
to work.    It may work, it may not.    Note that items in the Temp 
directory are not reviewed by the MiscKit administrator, as they are still 



in the process of becoming an actual part of the MiscKit.
Versioning;¬Versions of the MiscKit follow a form of x.y.z where x is 

the major version number, y is the minor version number, and z is a sub-
version number.    The sub-version number is incremented for bug fixes 
and minor additions to existing resources.    The minor version number, 
y, is incremented when a new resource is added to the MiscKit, or a 
large enough number of changes to existing resources has been made.    
The major revision number, x, is incremented for major architectural 
changes in the MiscKit which affect several resources, or when the group
of MiscKit authors feel that it should be incremented.    Whenever y is 
incremented, z is reset to zero, and whenever x is incremented, both y 
and z are reset to zero.    Major and minor releases will be stored on the 
official MiscKit archive site (currently ftp.byu.edu) and will also be 
forwarded to the standard NEXTSTEP ftp archives, such as cs.orst.edu.    
Bug fixes may or may not be forwarded to the major archive sites.

Backward;¬Backward compatibility between versions is not always 



guaranteed.    Minor revisions will be compatible with any previous 
version of the same major revision level.    Between major revision levels,
however, nothing is guaranteed.    The programming interface will be 
kept as uniform as possible.    Incompatibilities will occur when it is 
better to move on and use improved code than it is to keep crufty, old, 
poorly written code around.    In other words, unlike the DOS world, we 
refuse to keep dumb code around for compatibility's sake alone.    The 
whole point of the MiscKit is to provide a useful kit of state of the art 
objects.    It should be the best that it can be.    (To the users of the 
MiscKit:    Note that backward compatibility will be attempted, but it will 
only be achieved in cases where it is not a hindrance.    Most of the time, 
backwards compatibility will occur, so don't worry about us turning your 
world upside down.    We'll try not to do that.    Really.)

__________



DaggerFootnote;¬²Although it does not currently exist, the basic shape 
of a runtime library is already partly fleshed out, in case of the event 
that it become needed.    Basically, it would work like this¼ first, it would
be completely contained in a directory that a user would install on their 
system, installable in either /LocalLibrary (preferred) or in ~/Library.    
(Another possibility, mimicking NEXTSTEP's shared resources, would be 
to install in /usr/local/lib or ~/lib.)    The folder would be provided in the 
MiscKit both expanded and as an Installer .pkg file.    The .pkg file could 
then be distributed with any app the uses the MiscKit; if the user hasn't 
already installed the package, they would do so before installing the 
app.    When installed, subdirectories would be used to specify a 
particular version of the MiscKit, so that newer resources won't overwrite
old resources, since an older third party application might require an 
older resource.    When a MiscKit object requires a resource, it would then
ask a manager object (which would be written and added to the MiscKit) 
to locate the resource.    The manager would search, in the following 
order, the .app wrapper, the user's local ~/lib and ~/Library directories, 
then /usr/local/lib and /LocalLibrary.    Within each of the listed 
directories, it would search from the newest back to the earliest version 
of the resource directory.    Note that a version of the searcher compiled 
for a certain revision level of the misckit would start at it's revision level 



and work down, thus avoiding the problem of grabbing a newer, 
incompatible, resource.    Also, to avoid duplication of resources, only 
resources that change or are new to the MiscKit would appear in the 
higher directory levels (since the search will eventually find the old 
resources in the lower levels).    This system is a proposal, and it, or a 
similar scheme, will be implemented if deemed a worthwhile project by 
a simple majority of the MiscKit authors, but only if someone is willing to
actually implement it.    Currently, there is no perceived need for a 
runtime library.


